Dynamic neural fields: theory and applications


Dynamic Neural Fields (DNFs) formalized by nonlinear integro-differential equations have been originally introduced as a model framework for explaining basic principles of neural information processing in which the interactions of billions of neurons are treated as a continuum. The intention is to reduce the enormous complexity of neural interactions to simpler, population properties that are tractable by analytical mathematical tools. More recently, complex models consisting of several connected DNFs have been developed to explain higher level cognitive functions (e.g., memory, decision making, prediction and learning) and to implement these functionalities in autonomous robots. I will give an overview about the physiological motivation of DNFs, the mathematical analysis of their dynamic behaviors, and their application in cognitive robotics. As an example study, I focus on ”multi-bump” solutions that have been proposed as a neural substrate for a multi-item memory function. I show how the existence and stability properties of these solutions can be exploited to endow a robot with the capacity to efficiently learn the timing and the serial order of sequential events. I also discuss new mathematical challenges that are motivated by robotics applications.


[1] S.-i. Amari (1977). Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics 27 (2), 77-87.
[2] W. Erlhagen, E. Bicho (2006). The dynamic neural field approach to cognitive robotics, Journal of Neural Engineering 3 (3), R36

[3] F. Ferreira, W. Erlhagen, E. Sousa, L. Louro, E. Bicho (2014). Learning a musical sequence by observation: A robotics implementation of a dynamic neural field model, in: Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2014 Joint IEEE International Con- ferences on, IEEE, pp. 157-162.

[4] W. Erlhagen, E. Bicho, E. (2014). A Dynamic Neural Field Approach to Natural and Efficient Human-Robot Collaboration. In Neural Fields (pp. 341-365). Springer Berlin
[5] F. Ferreira, W. Erlhagen, E. Bicho (2016). Multi-bump solutions in a neural field model with external inputs. Physica D: Nonlinear Phenomena, 326, 32-51.